论文部分内容阅读
在隧道位移反分析方面,文章针对BP神经网络易过度训练样本及小样本精度较低的缺陷,利用支持向量机(SVM)良好的泛化能力,提出了一种基于支持向量机进行隧道工程的弹塑性位移反分析方法。同时考虑支持向量机的性能很大程度依赖于参数的选择,运用改进的人工鱼群(IAF)高效的全局搜索能力,寻找最优的SVM参数,以此避免SVM在参数选择上的随机性。利用FLAC^3D软件进行某隧道工程正分析计算,依据若干测点的位移计算结果,运用该方法进行弹塑性位移反演。结果表明,在小样本空间里,该方法的收敛速度和反演精度均优于BP神经网