论文部分内容阅读
为了在独立于个体身份的面部表情识别中取得更加理想的效果,提出了一种基于二维多尺度局部Gabor二进制模式(MB-LGBP)特征的识别方法。对于表情识别而言,MB-LGBP已被证明了是一种局部和整体上都具有很强表征能力的描绘子。将MB-LGBP与灰度共现矩阵(GLCM)结合起来得到了可以更好地描述局部纹理空间结构特性的二维MB-LGBP特征。在识别中,分别选择了支持向量机(SVM)和基于卡方距离的K-最近邻(KNN)分类器,并对结果进行了比较。实验结果证明了二维MB-LGBP特征相比于MB-LGBP以及其他