论文部分内容阅读
传统方法中对网络入侵信号的挖掘采用基于相位匹配的Fourier变换方法,对入侵信号的边缘特征不能很好挖掘,提出一种采用Radon变换的网络入侵信号特征挖掘方法,基于特征分解原理,在时频空间中构建入侵信号的协方差矩阵,采用多特征向量奇异值分解方法挖掘入侵信号的边缘积分特征。运用Radon变换把由原来的点-直线对偶变成了点-正弦曲线对偶,优化对边缘积分特征的挖掘效果。在笛卡儿坐标空间中将挖掘数据分解为两个空间向量,实现特征挖掘。仿真实验表明,采用该算法进行大型网络入侵信号的特征挖掘,能有效检测出入侵信号的边缘