论文部分内容阅读
In many gas-liquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gas-liquid flow pattern. Bubble formation models for variant gas-liquid flow patterns have been developed based on force balance. The effects of the orientation of gas-liquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient air-water system, the suitable gas-liquid flow pattern is important to obtain smaller bubbles under the low velocity liquid cross-flow conditions with stainless steel spargers. Among the four types of gas-liquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow produces the smallest initial bubbles. However the orientation effects of gas and liquid flow are found to be insignificant when liquid velocity is higher than 3.2 m·s 1or the orifice diameter is small enough.
In many gas-liquid processes, the initial bubble size is determined by a series of operation parameters along with the sparger design and gas-liquid flow pattern. effects of the orientation of gas-liquid flow, gas velocity, liquid velocity and orifice diameter on the initial bubble size have been clarified. In ambient air-water system, the suitable gas-liquid flow pattern is important to obtain smaller bubbles under the low velocity liquid cross-flow conditions with stainless steel spargers. Among the four types of gas-liquid flow patterns discussed, the horizontal orifice in a vertically upward liquid flow were the smallest initial bubbles. However the orientation effects of gas and liquid flow are found to be insignificant when liquid velocity is higher than 3.2 m · s 1or the orifice diameter is small enough.