论文部分内容阅读
提出一种基于支持向量域描述的图像集匹配方法.该方法首先通过支持向量机学习,将每个图像集合映射到高维特征空间,使用支持向量域对图像集合建模,建立的模型使用一个包含大部分样本的最小闭球表示.然后引入基于支持向量域之间距离的相似性度量,将集合的匹配转换为成对的支持向量域之间的距离计算.最后在基于集合的人脸和对象识别任务中分别进行测试,文中方法的识别率在ETH80、HondaUCSD和YouTube数据库上分别达到96.37%、100%和95.32%,优于其他方法.