论文部分内容阅读
为了提高模型预测精度,结合连续小波变换(CWT)的最优参数选择,优化小麦蛋白质光谱模型。对原始光谱进行CWT,利用主成分分析(PCA)选出5种小波db1、sym2、sym5、sym7、coif1;在不同尺度参数下利用偏最小二乘法(PLS)建模,确定尺度参数为15;在此基础上,利用CWT结合多元散射校正(MSC)及支持向量机(SVM)建模确定最优小波db1;在最优参数下用CWT结合无信息变量消除算法(UVE)和连续投影算法(SPA)及SVM建立预测模型,预测均方根误差为0.3930,优于CWT-UVEPLS