论文部分内容阅读
深度神经网络易受对抗样本攻击的影响并产生错误输出,传统的生成对抗样本的方法都是从优化角度生成对抗样本.文中提出基于生成对抗网络(GAN)的对抗样本生成方法,使用GAN进行白盒目标攻击,训练好的生成器对输入样本产生扰动,生成对抗样本.使用四种损失函数约束生成对抗样本的质量并提高攻击成功率.在MNIST、CIFAR-10、ImageNet数据集上的大量实验验证文中方法的有效性,文中方法的攻击成功率较高.