论文部分内容阅读
EuIef—Lagrange 方程是描述机电能量转换系统状态的一组偏微分方程。本文由机电换能的关键环节——耦合场的分析出发,从达朗伯(a’aIrnmbrt)原理、汉密尔顿(Hamilton)原理等不同角度出发,导出这一方程,并通过对拉格朗日函数 L=T′-V 的讨论,着重闸明了作为系统的重要状态函数的广义动共能的物理本质,从而为该方程在非线性条件下的正确应用提供了更确切的基础。最后,应用 Euler——Lagrange 方程建立了一般化电机的运动方程。
The EuIef-Lagrange equation is a set of partial differential equations that describe the state of an electromechanical energy conversion system. This paper starts with the analysis of the coupling field, which is the key link of electromechanical transduction. From the angles of a’aIrnmbrt principle and Hamilton’s principle, this equation is derived and the Lagrange function is passed. The discussion of L=T’-V focuses on the physical nature of the generalized dynamic co-energization as an important state function of the system, thus providing a more accurate basis for the correct application of the equation under non-linear conditions. Finally, Euler-Lagrange equations are used to establish the generalized motor equations of motion.