论文部分内容阅读
提出最小生成树的支持向量机模拟电路故障诊断方法,通过小波分解提取电路故障特征,在特征空间中以故障类的可分性测度为权值构造最小生成树,得到具有聚类属性的故障子类划分,从而优化故障决策树节点的分布。按照最小生成树的结构建立具有较大分类间隔的多分类支持向量机,能够有效地提高模拟电路故障诊断的正确率。该方法简化支持向量机的结构,在实例电路的故障诊断中获得更高的诊断精度和效率,其性能优于常用的支持向量机方法。