论文部分内容阅读
目的评估MR灌注参数(K~(trans))和扩散参数(ADC)在不同脑肿瘤的相关关系。方法回顾性研究13例脑肿瘤(男8例女5例平均年龄54.6±17.7岁,其中胶质母细胞瘤3例,低级别-间变性胶质瘤4例,脑膜瘤3例,转移瘤3例。所有患者均行T_1WI动态对比增强MR灌注和扩散成像(Magnetom Trio,A Tim System 3.0 T,Siemens)。对每个病例,在相应的K~(trans)和ADC图上选取兴趣区。记录所有兴趣区的K~(trans)和ADC的最大值(max),平均值(mean),最小值(min),并进行Pearson相关分析。结果 K~(trans)(max)与ADC(min)及ADC(mean)呈明显负相关,Pearson相关系数分别为(r=-0.536,P<0.001)(r=-0.465,P<0.001)。K~(trans)(mean)与ADC(mean)呈明显负相关(r=-0.228,P=0.038)。K~(trans)(min)亦与ADC(max)呈明显负相关(r=-0.355,P<0.001)。结论不论脑肿瘤的类型,ADC值与K~(trans)值始终呈负相关,这些发现说明微血管渗透性、肿瘤微环境等因素,可能调节和/或影响肿瘤细胞数量、缺血性损伤及复杂的细胞外环境变化。
Objective To evaluate the correlation between MR perfusion parameters (K trans (trans)) and diffusion parameters (ADC) in different brain tumors. Methods The retrospective study of 13 cases of brain tumors (8 males and 8 females with an average age of 54.6 ± 17.7 years, including 3 cases of glioblastoma, 4 cases of low grade - anaplastic glioma, 3 cases of meningiomas, 3 cases of metastases All patients underwent T_1WI dynamic contrast-enhanced MR perfusion and diffusion imaging (Magnetom Trio, A Tim System 3.0 T, Siemens). For each case, select regions of interest on the corresponding trans and ADC maps. And K (trans) and ADC (max), mean (mean) and min (min) of all regions of interest were calculated and analyzed by Pearson correlation.Results K ~ (trans) (R = -0.536, P <0.001) (r = -0.465, P <0.001), and the mean of ADC and the mean of ADC were (P <0.001) (R = -0.228, P = 0.038) .K ~ (trans) (min) also had a negative correlation with ADC (max) (r = -0.355, P <0.001) .Conclusion No matter the type of brain tumor, ADC values always have a negative correlation with K-values. These findings indicate that microvascular permeability, tumor microenvironment and other factors may regulate and / or affect the number of tumor cells, ischemic injury and complex extracellular environment changes.