论文部分内容阅读
越南语中存在大量的交叉歧义片段。为了解决交叉歧义给分词、词性标注、实体识别和机器翻译等带来的影响,该文选取统计特征、上下文特征和歧义字段内部特征,尝试性地构建最大熵模型,对越南语的交叉歧义进行消解。该文通过三种方法整理出包含174 646词条的越南语词典,然后通过正向和逆向最大匹配方法从25 981条人工标注好的越南语分词句子中抽取5 377条歧义字段,分别测试了三类特征对歧义模型的贡献程度,并对歧义字段做五折交叉验证实验,准确率达到了87.86%。同时,与CRFs进行对比实验,结果表明该方法能更有效消解