论文部分内容阅读
为了实现作物病害的计算机识别,提出了一种基于双编码遗传特征选择的支持向量机和病害图像多特征参数识别病害的方法。通过病害图像增强处理,采用基于HIS颜色空间的H分量与大津法(Otsu)结合对病斑图像自动分割,自动提取病斑的特征参数;运用双编码遗传算法优化病斑特征子集,并对其赋予权重,底层构建一对一投票策略的支持向量机分类识别作物病害的方法和途径。应用该方法对烟草病害中多种容易混淆的病害进行实验,结果表明:该方法与没有采用遗传算法的支持向量机相比,在同等条件下,特征向量减少了38%,而正确率却提高了6.