论文部分内容阅读
非负矩阵分解(NMF)是在矩阵非负约束下的一种局部特征提取算法。为了提高识别率,提出了稀疏约束图正则非负矩阵分解方法。该方法不仅考虑数据的几何信息,而且对系数矩阵进行稀疏约束,并将它们整合于单个目标函数中。构造了一个有效的乘积更新算法,并且在理论上证明了该算法的收敛性。在ORL和MIT-CBCL人脸数据库上的实验表明了该算法的有效性。