论文部分内容阅读
在分析和研究了基于神经网络的农机总动力预测的基础上,指出了神经网络传统预测方法预测精度低的原因是神经网络训练阶段和预测阶段的矛盾性。通过一系列实验表明:随着拟合误差的逐渐减小,预测误差出现了先下降后上升的规律,即所谓的"过拟合"问题。为了解决这个问题,应用最佳停止法对农机总动力进行预测,该方法把样本集分成训练样本集、确认样本集及验证样本集3部分。在训练过程中监测训练样本集和确认样本集的误差,当确认样本集的误差连续20次不减小时,退出训练,返回最小确认样本集误差所对应的网络数据,并用验证样本集来检验最佳停止