论文部分内容阅读
Streptococcus pyogenes Cas9 (SpCas9) is the most widely used genome editing tool in plants.The editing induced by SpCas9 strictly requires a canonical NGG protospacer-adjacent motif (PAM),significantly limiting its scope of application.Recently,five SpCas9 variants,SpCas9-NRRH,SpCas9-NRCH,SpCas9-NRTH,SpG,and SPRY,were developed to recognize non-canonical PAMs in human cells.In this study,these variants were engineered for plant genome editing,and their targeted mutagenesis capabilities were comprehensively examined at various canonical and non-canonical PAM sites in rice (Oryza sativa)by stable transformation.Moreover,both cytosine base editors using a rat APOBEC1 or a human APO-BEC3a and adenine base editors using a directly evolved highly compatible TadA*-8e deaminase were developed from these SpCas9 variants.Our results demonstrated that the developed SpCas9 variantsbased base editors readily generated conversions between C.G and T.A in the target sites with noncanonical PAMs in transgenic rice lines.Collectively,the toolbox developed in this study substantially expands the scope of SpCas9-mediated genome editing and will greatly facilitate gene disruption and precise editing in plants.