论文部分内容阅读
摘 要 本文介绍了我国聚氨酯的发展概况及水性聚氨酯的优点和存在的问题。综述了水性聚氨酯的改性研究进展,重点讨论了环氧树脂改性、有机硅改性、聚丙烯酸改性和有机氟改性。各种改性技术均能够显著提高水性聚氨酯的综合性能,拓宽了其应用领域。
关键词 水性聚氨酯 改性 研究进展
聚氨酯((Polyurethane,简称PU)是指含有重复的氨基甲酸酯键(NHCOO)的一类高分子材料,是聚氨基甲酸酯的简称。聚氨酯树脂制成的产品有泡沫塑料、弹性体、涂料、胶粘剂、纤维、合成皮革等。广泛应用于机电、船舶、轻工及纺织部门,产品与品种逐年递增,是具有重大应用价值的先进高分子材料,已经成为当代高分子材料中品种最多、用途最广、发展最快的一种新型有机材料。我国聚氨酯工业始于20世纪50年代末60年代初,至今已50年左右。自1936年德国化学家Otto.Bayer等在研究异氰酸酯的加成聚合反应过程中,首先合成出含有氨基甲酸酯特性基团的化合物。在第二次世界大战期间聚氨酯技术得到了发展,20世纪50年代以来,有关聚氨酯的新品种、新工艺、新装备大量涌现,逐渐形成了成熟、完整的聚氨酯工业体系。据中国PU工业协会统计,1991年我国PU行业产量为15万t,1998年为77万t,而2011年我国PU行业产量达到了700万t,生产和消费规模居世界首位。预测我国在“十二五”期间,PU产品年消费量将达到900万t~1 000万t,实现产值将达到2 700亿~4 000亿元。
水性聚氨酯(WPU)是相对于溶剂型聚氨酯而言的,它是聚氨酯粒子分散在连续相(水)中的二元胶体体系。目前市场上大多数为溶剂型聚氨酯树脂,含有大量的有机溶剂和一定量的游离异氰酸酯,影响人们的身体健康和生活环境。随着各国环保法规对VOC(volatile organic compounds)排放量的限制以及对环保的重视,水性聚氨酯得到了较快的发展,己在织物、皮革、黏合剂等领域得到了广泛应用,正逐步替代溶剂型聚氨酯。
一、水性聚氨酯存在的问题
水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,具有弹性、耐磨性、韧性、附着力和低温抗冲击性优异、VOC含量低,节能环保等优点。水性聚氨酯虽然具有很多优良性能,但其还存在着很多不足,如涂膜的耐水性不好,乳液稳定性、自增稠性、固含量等方面的性能不够理想,且机械强度不高,特别是硬度不够高。分析引起这些问题的主要原因包括以下几个方面:水性聚氨酯由于主链或侧链引入亲水基团从而使所形成的涂膜具有较高的表面能,通过成盐的方法虽然使聚氨酯可以分散在水相中,但是正是由于这些基团的存在使得水性聚氨酯耐水性、耐溶剂性、耐化学品性以及机械强度等性能变差。与有机溶剂相比,水的蒸发潜热很大(约540 cal/g),为了加快成膜过程中水分的蒸发需要高温,因此就需要投入大量能量。水的表面张力很高(约72 dtne/cm2),虽然添加助溶剂和表面活性剂可以降低表面张力,但是添加助溶剂会增加VOC的排放,添加表面活性剂会促使水性配方中被分散的成分稳定化,从而使夹带气泡的水-空气界面稳定化,因而产生泡沫,导致形成针孔。同时水的高导电性也会引起各种问题。
由于水性聚氨酯的这些缺陷,目前使用的水性聚氨酯基本上都是经过改性的。聚氨酯的改性有很多种,包括环氧树脂改性、有机硅改性、聚丙烯酸改性、有机氟改性等。本文主要对其改性技术进行了综述。
二、水性聚氨酯的改性
1.环氧树脂改性水性聚氨酯。环氧树脂(EP)材料具有高模量、高强度、易固化、黏附力强、化学稳定性好、价格低等优点,但其柔韧性、耐磨性不及WPU,因此,采用EP改性WPU可将两者的优良性能有机结合。利用EP改性WPU的方法主要有两种,一种是物理共混法,该方法是将EP均匀的分散到WPU預聚体中,两者之间并没有化学键的结合,最终将共混物在水中乳化;另一种是化学共聚法,该方法是EP开环后形成端羟基化合物与WPU进行共聚反应,得到的预聚体再在水中乳化。实验证明,采用化学共聚法制备的WPU乳液的稳定性不及物理共混法。
杜鹃研究了环氧树脂用量对乳液外观、乳液贮存稳定性等的影响情况,结果表明,随着EP用量的增加,乳液外观由乳白透明变为乳白色,由于当EP用量较多时,分散体的粒径大,阻碍了光线的透过,所以乳液呈发白现象。同时,随着EP用量的增加乳液黏度增大,贮存稳定性下降,低温柔韧性变差,吸水率减小。因为增加EP用量即增加了分子中交联结构,耐水性也就会越好。随着EP用量的增加,硬段含量增大,硬度增大,低温柔韧性也就会变差。李辉采用E-51环氧树脂为改性剂,得到了聚醚型环氧树脂改性WPU乳液。当环氧树脂E-51质量分数为4%时改性产品的性能最佳,该产品具有耐水性好、拉伸强度高等特点。
2.有机硅改性水性聚氨酯。有机硅材料是分子结构中含有硅元素的高分子合成材料,主链是一条键交替组成的稳定骨架,有机基团与硅原子相连形成侧基。由于有机硅的这种特殊结构和组成,使它具有耐高温、耐气候老化、电绝缘、耐燃、无毒、无腐蚀和生理惰性等优异性能。有机硅改性可提高涂膜的机械性能。含有硅氧烷基团的聚合物表面张力低于不含硅氧烷基团的聚合物,低表面能组分就会逐渐迁移至高表面能组分的外部,从而形成硅氧烷链段在乳液胶膜表面富集。富集于乳液表面的活性硅氧烷基团在一定条件下水解形成硅醇,硅醇与聚合物内部或表面的活性基团缩合形成立体网络(─Si─O─Si─)交联结构,化学交联点增加,交联密度相应增加,对涂膜表层的致密度有增强作用,并最终提高涂膜的机械性能。应用于水性聚氨酯改性的有机硅化合物主要是羟基硅油、氨基硅油、硅烷偶联剂等。
詹彪等用羟基硅油改性水性聚氨酯,结果表明,羟基硅油改性后的聚氨酯胶膜的分子链中聚硅氧烷连段从内部逐渐向表面迁移,有机硅富集在胶膜表面,从而增加了胶膜的疏水性。李文渊等采用3-氨丙基三乙氧基硅烷改性水性聚氨酯,研究了有机硅用量对乳液黏度和涂膜吸水率的影响,结果表明。有机硅改性提高了水性聚氨酯体系交联密度,从而使乳液黏度增加,涂膜吸水率下降,耐水性提高。Chen H等用氨乙基氨丙基聚二甲基硅氧烷改性聚醚型水性聚氨酯,发现改性产品的耐水性明显得到提高。曲鹏飞等用羟基硅油改性阳离子水性聚氨酯,通过采用差示扫描量热分析证明羟基硅油的加入使改性样品软、硬段玻璃化转变温度都降低,这是因为羟基硅油中-CH3围绕Si-O键旋转的自由能几乎为零,使得整个羟基硅油分子旋转十分自由,将其引入聚氨酯分子链中,整个大的分子链就会变得更加柔顺。从胶膜的力学性能显示,羟基硅油的引入使得胶膜的断裂伸长率增加,而胶膜的拉伸强度略有下降。 有机硅改性水性聚氨酯具有很多优良的性质,如涂膜具有优良的耐水性、耐候性、耐酸碱性、耐高低温使用性能和良好的机械性能。但用含有机硅分子制得的涂料存在力学强度低、附着力差等缺点。要改善这些缺陷,需少加溶剂,合理进行分子结构的设计,使共聚物具有聚氨酯的力学性能、耐磨性,同时具有有机硅烷的介电性、耐水性及生物相容性。
3.聚丙烯酸酯改性水性聚氨酯。聚丙烯酸酯(PA)树脂具有优异的耐光性、耐候性,受紫外线照射不易发生黄变,耐酸、碱、盐腐蚀,柔韧性高且价格低廉。采用聚丙烯酸酯改性水性聚氨酯,可将水性聚氨酯的优异性能与聚丙烯酸酯树脂良好的附着力、耐候性有机结合,从而制备出高固含、低成本的水性树脂,这种方法提高了水性聚氨酯树脂的综合性能又降低了产品的成本,具有广阔的应用前景。国外已经在很多领域有了广泛的应用。
陈金莲等采用平衡溶胀发制备了丙烯酸改性水性聚氨酯乳液,结果发现该水性聚氨酯改性方法可以大大提高甲基丙烯酸甲酯(MMA)的含量,明显提高了改性水性聚氨酯乳液及涂膜性能。吴冬梅等采用丙烯酸丁酯(BA)和MMA与WPU乳液共聚制备水性聚氨酯/聚丙烯酸酯复合乳液,结果表明所制备的复合乳液具有良好的室温贮存稳定性及成膜性能。与水性聚氨酯乳液相比,该复合乳液粒径有所增大,对基材润湿性更好,胶膜耐水性明显提高。杨霞制备了具有核壳结构的PUA复合乳液,研究了亲水扩链剂二羟甲基丙酸(DMPA)用量,R值、乳化劑用量、核壳质量比对乳液和胶膜性能的影响。王志强等合成了甲基丙烯酸甲酯改性的水性聚氨酯乳液,扫描电镜图显示,经丙烯酸酯改性的水性聚氨酯膜表面相对平整,这是因为聚氨酯与丙烯酸酯的微相分离程度小,相容性好,当m(PU)∶m(PA)=8∶2时得到的丙烯酸酯水性聚氨酯的综合性能较佳。
4.有机氟改性水性聚氨酯。含氟高聚物的性质主要取决于分子中的氟原子,而氟原子结合电子能力强、可极化率小、折射率低、电负性是所有元素中最高的。因此氟聚合物具有优良的电化学性能和光学性能,氟原子半径非常小,所以C-F键键长短,键能高,因此氟聚合物耐热性、耐氧化性及耐化学性优良。含氟聚合物的分子间凝聚力低,空气与聚合物界面间的分子作用力小,所以表面自由能低。而含氟化合物在成膜过程中有向膜表面迁移富集的趋势,因此,含氟化合物具有优异的表面性能,如疏水耐油性、润滑性、耐溶剂性及良好的生物相容性等。对水性聚氨酯进行氟改性,使氟链段在材料表面富集,从而获得同全氟高分子材料相近的表面能。该方法能在很大程度上改善涂膜的性能,弥补水性聚氨酯在这些方面的缺陷。
李培枝等合成了全氟烷基侧链的氟改性水性聚氨酯,主要通过对水性聚氨酯进行单羟基的全氟乙基辛醇的接枝反应。结果表明,经过改性的水性聚氨酯涂膜的表面性能明显变低,耐水性、耐热性及耐腐蚀性明显提高。刘峥等制备出含氟长支链水性聚氨酯乳液,研究了含氟长支链的量对水性聚氨酯相关性能的影响。结果表明,在一定范围内随着氟含量的增加,乳液粒子粒径增加,涂膜表面张力明显降低,与水的接触角上升,涂膜的热稳定性得到提高,拉伸强度增加,断裂伸长率降低。
参考文献
[1]杜鹃.环氧树脂对封端型水性聚氨酯的改性研究[J].光谱实验室,2012.29(5):23-27.
[2]李辉.环氧E-51改性水性聚氨酯胶黏剂的制备及性能研究[J].石油化工高等学校. 校报,2010,23(2):37-40.
[3]詹彪,谭宝华,李青山,等.羟基硅油改性水性聚氨酯的制备与性能研究[J].聚氨酯工业,2013.28(1):37-40.
[4]李文渊,曹有名,周心其.有机硅改性水性UV聚氨酯的合成与性能[J].化学工程与技术,2012.2:84-90.
关键词 水性聚氨酯 改性 研究进展
聚氨酯((Polyurethane,简称PU)是指含有重复的氨基甲酸酯键(NHCOO)的一类高分子材料,是聚氨基甲酸酯的简称。聚氨酯树脂制成的产品有泡沫塑料、弹性体、涂料、胶粘剂、纤维、合成皮革等。广泛应用于机电、船舶、轻工及纺织部门,产品与品种逐年递增,是具有重大应用价值的先进高分子材料,已经成为当代高分子材料中品种最多、用途最广、发展最快的一种新型有机材料。我国聚氨酯工业始于20世纪50年代末60年代初,至今已50年左右。自1936年德国化学家Otto.Bayer等在研究异氰酸酯的加成聚合反应过程中,首先合成出含有氨基甲酸酯特性基团的化合物。在第二次世界大战期间聚氨酯技术得到了发展,20世纪50年代以来,有关聚氨酯的新品种、新工艺、新装备大量涌现,逐渐形成了成熟、完整的聚氨酯工业体系。据中国PU工业协会统计,1991年我国PU行业产量为15万t,1998年为77万t,而2011年我国PU行业产量达到了700万t,生产和消费规模居世界首位。预测我国在“十二五”期间,PU产品年消费量将达到900万t~1 000万t,实现产值将达到2 700亿~4 000亿元。
水性聚氨酯(WPU)是相对于溶剂型聚氨酯而言的,它是聚氨酯粒子分散在连续相(水)中的二元胶体体系。目前市场上大多数为溶剂型聚氨酯树脂,含有大量的有机溶剂和一定量的游离异氰酸酯,影响人们的身体健康和生活环境。随着各国环保法规对VOC(volatile organic compounds)排放量的限制以及对环保的重视,水性聚氨酯得到了较快的发展,己在织物、皮革、黏合剂等领域得到了广泛应用,正逐步替代溶剂型聚氨酯。
一、水性聚氨酯存在的问题
水性聚氨酯是以水代替有机溶剂作为分散介质的新型聚氨酯体系,具有弹性、耐磨性、韧性、附着力和低温抗冲击性优异、VOC含量低,节能环保等优点。水性聚氨酯虽然具有很多优良性能,但其还存在着很多不足,如涂膜的耐水性不好,乳液稳定性、自增稠性、固含量等方面的性能不够理想,且机械强度不高,特别是硬度不够高。分析引起这些问题的主要原因包括以下几个方面:水性聚氨酯由于主链或侧链引入亲水基团从而使所形成的涂膜具有较高的表面能,通过成盐的方法虽然使聚氨酯可以分散在水相中,但是正是由于这些基团的存在使得水性聚氨酯耐水性、耐溶剂性、耐化学品性以及机械强度等性能变差。与有机溶剂相比,水的蒸发潜热很大(约540 cal/g),为了加快成膜过程中水分的蒸发需要高温,因此就需要投入大量能量。水的表面张力很高(约72 dtne/cm2),虽然添加助溶剂和表面活性剂可以降低表面张力,但是添加助溶剂会增加VOC的排放,添加表面活性剂会促使水性配方中被分散的成分稳定化,从而使夹带气泡的水-空气界面稳定化,因而产生泡沫,导致形成针孔。同时水的高导电性也会引起各种问题。
由于水性聚氨酯的这些缺陷,目前使用的水性聚氨酯基本上都是经过改性的。聚氨酯的改性有很多种,包括环氧树脂改性、有机硅改性、聚丙烯酸改性、有机氟改性等。本文主要对其改性技术进行了综述。
二、水性聚氨酯的改性
1.环氧树脂改性水性聚氨酯。环氧树脂(EP)材料具有高模量、高强度、易固化、黏附力强、化学稳定性好、价格低等优点,但其柔韧性、耐磨性不及WPU,因此,采用EP改性WPU可将两者的优良性能有机结合。利用EP改性WPU的方法主要有两种,一种是物理共混法,该方法是将EP均匀的分散到WPU預聚体中,两者之间并没有化学键的结合,最终将共混物在水中乳化;另一种是化学共聚法,该方法是EP开环后形成端羟基化合物与WPU进行共聚反应,得到的预聚体再在水中乳化。实验证明,采用化学共聚法制备的WPU乳液的稳定性不及物理共混法。
杜鹃研究了环氧树脂用量对乳液外观、乳液贮存稳定性等的影响情况,结果表明,随着EP用量的增加,乳液外观由乳白透明变为乳白色,由于当EP用量较多时,分散体的粒径大,阻碍了光线的透过,所以乳液呈发白现象。同时,随着EP用量的增加乳液黏度增大,贮存稳定性下降,低温柔韧性变差,吸水率减小。因为增加EP用量即增加了分子中交联结构,耐水性也就会越好。随着EP用量的增加,硬段含量增大,硬度增大,低温柔韧性也就会变差。李辉采用E-51环氧树脂为改性剂,得到了聚醚型环氧树脂改性WPU乳液。当环氧树脂E-51质量分数为4%时改性产品的性能最佳,该产品具有耐水性好、拉伸强度高等特点。
2.有机硅改性水性聚氨酯。有机硅材料是分子结构中含有硅元素的高分子合成材料,主链是一条键交替组成的稳定骨架,有机基团与硅原子相连形成侧基。由于有机硅的这种特殊结构和组成,使它具有耐高温、耐气候老化、电绝缘、耐燃、无毒、无腐蚀和生理惰性等优异性能。有机硅改性可提高涂膜的机械性能。含有硅氧烷基团的聚合物表面张力低于不含硅氧烷基团的聚合物,低表面能组分就会逐渐迁移至高表面能组分的外部,从而形成硅氧烷链段在乳液胶膜表面富集。富集于乳液表面的活性硅氧烷基团在一定条件下水解形成硅醇,硅醇与聚合物内部或表面的活性基团缩合形成立体网络(─Si─O─Si─)交联结构,化学交联点增加,交联密度相应增加,对涂膜表层的致密度有增强作用,并最终提高涂膜的机械性能。应用于水性聚氨酯改性的有机硅化合物主要是羟基硅油、氨基硅油、硅烷偶联剂等。
詹彪等用羟基硅油改性水性聚氨酯,结果表明,羟基硅油改性后的聚氨酯胶膜的分子链中聚硅氧烷连段从内部逐渐向表面迁移,有机硅富集在胶膜表面,从而增加了胶膜的疏水性。李文渊等采用3-氨丙基三乙氧基硅烷改性水性聚氨酯,研究了有机硅用量对乳液黏度和涂膜吸水率的影响,结果表明。有机硅改性提高了水性聚氨酯体系交联密度,从而使乳液黏度增加,涂膜吸水率下降,耐水性提高。Chen H等用氨乙基氨丙基聚二甲基硅氧烷改性聚醚型水性聚氨酯,发现改性产品的耐水性明显得到提高。曲鹏飞等用羟基硅油改性阳离子水性聚氨酯,通过采用差示扫描量热分析证明羟基硅油的加入使改性样品软、硬段玻璃化转变温度都降低,这是因为羟基硅油中-CH3围绕Si-O键旋转的自由能几乎为零,使得整个羟基硅油分子旋转十分自由,将其引入聚氨酯分子链中,整个大的分子链就会变得更加柔顺。从胶膜的力学性能显示,羟基硅油的引入使得胶膜的断裂伸长率增加,而胶膜的拉伸强度略有下降。 有机硅改性水性聚氨酯具有很多优良的性质,如涂膜具有优良的耐水性、耐候性、耐酸碱性、耐高低温使用性能和良好的机械性能。但用含有机硅分子制得的涂料存在力学强度低、附着力差等缺点。要改善这些缺陷,需少加溶剂,合理进行分子结构的设计,使共聚物具有聚氨酯的力学性能、耐磨性,同时具有有机硅烷的介电性、耐水性及生物相容性。
3.聚丙烯酸酯改性水性聚氨酯。聚丙烯酸酯(PA)树脂具有优异的耐光性、耐候性,受紫外线照射不易发生黄变,耐酸、碱、盐腐蚀,柔韧性高且价格低廉。采用聚丙烯酸酯改性水性聚氨酯,可将水性聚氨酯的优异性能与聚丙烯酸酯树脂良好的附着力、耐候性有机结合,从而制备出高固含、低成本的水性树脂,这种方法提高了水性聚氨酯树脂的综合性能又降低了产品的成本,具有广阔的应用前景。国外已经在很多领域有了广泛的应用。
陈金莲等采用平衡溶胀发制备了丙烯酸改性水性聚氨酯乳液,结果发现该水性聚氨酯改性方法可以大大提高甲基丙烯酸甲酯(MMA)的含量,明显提高了改性水性聚氨酯乳液及涂膜性能。吴冬梅等采用丙烯酸丁酯(BA)和MMA与WPU乳液共聚制备水性聚氨酯/聚丙烯酸酯复合乳液,结果表明所制备的复合乳液具有良好的室温贮存稳定性及成膜性能。与水性聚氨酯乳液相比,该复合乳液粒径有所增大,对基材润湿性更好,胶膜耐水性明显提高。杨霞制备了具有核壳结构的PUA复合乳液,研究了亲水扩链剂二羟甲基丙酸(DMPA)用量,R值、乳化劑用量、核壳质量比对乳液和胶膜性能的影响。王志强等合成了甲基丙烯酸甲酯改性的水性聚氨酯乳液,扫描电镜图显示,经丙烯酸酯改性的水性聚氨酯膜表面相对平整,这是因为聚氨酯与丙烯酸酯的微相分离程度小,相容性好,当m(PU)∶m(PA)=8∶2时得到的丙烯酸酯水性聚氨酯的综合性能较佳。
4.有机氟改性水性聚氨酯。含氟高聚物的性质主要取决于分子中的氟原子,而氟原子结合电子能力强、可极化率小、折射率低、电负性是所有元素中最高的。因此氟聚合物具有优良的电化学性能和光学性能,氟原子半径非常小,所以C-F键键长短,键能高,因此氟聚合物耐热性、耐氧化性及耐化学性优良。含氟聚合物的分子间凝聚力低,空气与聚合物界面间的分子作用力小,所以表面自由能低。而含氟化合物在成膜过程中有向膜表面迁移富集的趋势,因此,含氟化合物具有优异的表面性能,如疏水耐油性、润滑性、耐溶剂性及良好的生物相容性等。对水性聚氨酯进行氟改性,使氟链段在材料表面富集,从而获得同全氟高分子材料相近的表面能。该方法能在很大程度上改善涂膜的性能,弥补水性聚氨酯在这些方面的缺陷。
李培枝等合成了全氟烷基侧链的氟改性水性聚氨酯,主要通过对水性聚氨酯进行单羟基的全氟乙基辛醇的接枝反应。结果表明,经过改性的水性聚氨酯涂膜的表面性能明显变低,耐水性、耐热性及耐腐蚀性明显提高。刘峥等制备出含氟长支链水性聚氨酯乳液,研究了含氟长支链的量对水性聚氨酯相关性能的影响。结果表明,在一定范围内随着氟含量的增加,乳液粒子粒径增加,涂膜表面张力明显降低,与水的接触角上升,涂膜的热稳定性得到提高,拉伸强度增加,断裂伸长率降低。
参考文献
[1]杜鹃.环氧树脂对封端型水性聚氨酯的改性研究[J].光谱实验室,2012.29(5):23-27.
[2]李辉.环氧E-51改性水性聚氨酯胶黏剂的制备及性能研究[J].石油化工高等学校. 校报,2010,23(2):37-40.
[3]詹彪,谭宝华,李青山,等.羟基硅油改性水性聚氨酯的制备与性能研究[J].聚氨酯工业,2013.28(1):37-40.
[4]李文渊,曹有名,周心其.有机硅改性水性UV聚氨酯的合成与性能[J].化学工程与技术,2012.2:84-90.