论文部分内容阅读
为了降低港口集装箱吞吐量的预测误差,提高预测精度,文章通过分析传统的灰色预测模型和 BP 神经网络预测模型的优缺点,构建了灰色神经网络港口集装箱吞吐量预测模型,该模型充分发挥了灰色模型所需初始数据少和 BP 神经网络非线性拟合能力强的特点。以实际数值作为初始数据,各种灰色模型的预测值为神经网络的输入值,神经网络的输出值为组合预测结果。通过实例分析,结果表明:灰色神经网络预测模型提高了预测精度,预测结果比较理想,优于单一预测模型,因此,该模型用于港口集装箱吞吐量预测是可行的、有效的。