论文部分内容阅读
The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by incubating at 180 °C for different periods with subsequent recovery levels. Both X-ray diffraction and infrared absorption of those samples have been measured. Relative crystalline increases at early stage of heating fixation, and then decreased gradually. Hemicellulose and lignin decomposition were induced by the fixation process, especially at 180 °C, and lignin was degraded actively. Furthermore, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions un- derlying them vary, which is consistent with the difference of fixation mechanisms.
The changes in relative crystalline, chemical composition and internal structure of compressed Chinese fir wood after different heating fixations were found strictly related to fixation conditions. The compressed wood powders were fixed either by heating at different temperatures all resulting in a 10% recovery, or by Both X-ray diffraction and infrared absorption of those samples have been measured. Both X-ray diffraction and infrared absorption of those samples have been measured. Both X-ray diffraction and infrared absorption of those samples have been measured. the fixation process, especially at 180 ° C, and lignin was degraded actively. However, absorbed water was lost after heating, but cellulose did not change markedly. Although different fixation pathways can result in the same recovery level, the major chemical reactions un- derlying them vary, which is consistent with the difference of fixation mechanisms.