论文部分内容阅读
针对BP网络的训练算法SPDS算法,研究了局部极小问题.利用基于单参数动态搜索算法的SPDS算法的变量逐一搜索的特点,证明了每次迭代的等价误差函数均为拟凸函数,进而极小点存在并可求出.将迭代必将收敛的初值集合定义为全局极小区域,针对局部极小问题给出L-SPDS算法,并证明了SPDS算法的全局极小区域沿坐标轴方向扩张的区域既是L-SPDS算法的全局极小区域,从而SPDS算法收敛于全局极小点的可能性大大增加了,算法的仿真试验也证明了这一点.