论文部分内容阅读
针对复杂环境下红外图像信噪比和对比度低,边缘模糊,目标分割困难的情况,提出一种基于模糊增强和均值漂移图像滤波的红外目标分割方法。首先定义新的隶属度函数,运用模糊集理论进行红外图像增强,避免了传统模糊增强算法的弊病,有效提高目标与背景的对比度;之后利用IC(I交叉置信区)规则确定均值漂移的带宽参数,提出一种新的自适应带宽均值漂移图像滤波方法,实现图像的进一步平滑和聚类;最后利用自适应阈值实现红外目标分割。实验结果表明,算法能够正确有效地分割出复杂环境下的红外目标,并且很好地保持了目标的轮廓细节。