论文部分内容阅读
提出一种基于非负矩阵分解(NMF、SNMF和WNMF)的中文倾向性句子识别算法.该算法首先构建倾向性特征矩阵,然后通过NMF、SNMF和WNMF算法分别来降维、提取潜在语义,最后采用支持向量机分类器识别中文倾向性句子.实验结果表明,与PCA和SVD相比,NMF、SNMF和WNMF算法能有效地降低维度、提取潜在语义,并提高倾向性句子识别的精度.