论文部分内容阅读
随着电子商务系统用户和商品数目的不断增加,导致整个项目空间上的用户评分数据极端稀疏,严重影响推荐系统的推荐质量。针对这一问题,提出了一种基于朴素贝叶斯方法的协同过滤推荐算法,采用改进的加权朴素贝叶斯方法对没有评分的数据进行预测。通过对未评分数据进行预测,缓解了数据稀疏性,提高了最近邻居项目搜索的准确度。实验结果表明,该算法在一定程度上提高系统的推荐质量。