论文部分内容阅读
时间的描述和划分是时态数据采掘中一个非常重要的方面,针对目前时态数据采掘中缺少对多粒度时间等的研究的现状,提出了多粒度时间,粒度转换,时态序等的严格数学定义,并研究和证明了它们的相关性质。以此为基础引出了一个多粒度时间部分周期模型,对模型的支持度和置信度等性质进行了详细讨论,并将多粒度时间下的部分周期模型运用到股票数据实验中,实验表明所提出的模型对于研究时态数据采掘具有重要意义。