论文部分内容阅读
逆向工程中,对测量数据的处理首先要建立数据点之间的拓朴结构,这通常通过计算点的K邻近来实现.文中在分析现有算法的基础上,提出了一种新的基于空间划分的海量数据K邻近算法.该算法综合考虑了点云密度、点云数量以及K值对小立方体栅格边长的影响,通过确定合适的小立方体栅格边长以及排除不包含点云数据的小立方体栅格来确定邻近点最佳搜索范围,从而提高了搜索速度,保证了搜索结果的正确性.最后通过逆向软件的二次开发编程验证了算法.