论文部分内容阅读
The phosphatidylinositol (PI) metabolic pathway is considered critical in plant responses to many environmental factors,and previous studies have indicated the involvement of multiple PI-related gene families during cellular responses.Through a detailed analysis of the Arabidopsis thaliana genome,82 polypeptides were identified as being involved in PI signaling. These could be grouped into different families including PI synthases (PIS),PI-phosphate kinases (PIPK),phospholipases (PL),inositol polyphosphate phosphatases (IPPase),inositol polyphosphate kinases (IPK),PI transfer proteins and putative inositol polyphosphate receptors. The presence of more than 10 isoforms of PIPK,PLC,PLD and IPPase suggested that these genes might be differentially expressed during plant cellular responses or growth and development. Accordingly,DNA chip technology was employed to study the expression patterns of various isoforms.In total,79 mRNA clones were amplified and used for DNA chip generation. Expression profile analysis was performed using samples that represented multiple tissues or cellular responses. Tested samples included normal leaf,stem and flower tissues,and leaves from plants treated with various hormones (auxin,cytokinin,gibberellin,abscisic acid and brassinosteroid) or environmental factors (temperature,calcium,sodium,drought,salicylic acid and jasmonic acid).Results showed that many PI pathway-related genes were differentially expressed under these experimental conditions.In particular,the different isoforms of each family were specifically expressed in many cases,suggesting their involvement in tissue specificity and cellular responses to environmental conditions. This work provides a starting point for functional studies of the relevant PI-related proteins and may help shed light onto the role of PI pathways in development and cellular responses.