论文部分内容阅读
In this paper, we study the asymptotics of the Krawtchouk polynomials KnN(z;p,q) as the degree n becomes large. Asymptotic expansions are obtained when the ratio of the parameters n/N tends to a limit c ∈ (0, 1) as n →∞. The results are globally valid in one or two regions in the complex z-plane depending on the values of c and p;in particular, they are valid in regions containing the interval on which these polynomials are orthogonal. Our method is based on the Riemann-Hilbert approach introduced by Deift and Zhou.