论文部分内容阅读
通过收集大数据对汽车驾驶员的疲劳特征和疲劳参数进行学习,根据学习的参数将驾驶员的疲劳程度进行分类,提出了蚁群优化的模糊C均值聚类算法。在初步聚类中运用蚁群聚类产生聚类中心和簇的个数,提供给模糊C均值聚类;利用模糊C均值聚类再次进行聚类,克服了单个聚类算法的缺点。仿真结果表明:文中方法比一般方法具有更好的性能和聚类效果。利用BP神经网络模式识别功能可以识别疲劳驾驶类别。