论文部分内容阅读
The corrosion evolution of 2024-T351 and 7075-T651 aluminum alloys in the thin electrolyte layer (TEL) and wet-dry alter-nating cycle (WDAC) environment is studied in this work.The results show that in the TEL environment,the competitive effect between H+ that accelerates corrosion reactions and deposition of aluminum sulfate that impedes corrosion attacks exists during the corrosion exposure.The difference is that with increasing HSO3-,subsurface intergranular corrosion on 2024-T351 is promoted to form exfoliation corrosion eventually and the degree of exfoliation corrosion begins to decrease because the blocking effect of aluminum sulfate exceeds the expediting effect of H+.For 7075-T651,the corrosion area and the corrosion diameter decrease gradually,which is attributed to the HSO3-enhanced deposition of corrosion products and their blocking effect.In the WDAC environment,the corrosion processes of 2024-T351 and 7075-T651 are the acidic dissolution of the matrix during the soaking phase.When the HSO3-concentration is high enough (0.1 M),the inhibiting effect of aluminum sulfate becomes the dominant factor.