论文部分内容阅读
传统的快速聚类算法大多基于模糊C均值算(Fuzzy C-means,FCM),而FCM对初始聚类中心敏感,对噪音数据敏感并且容易收敛到局部极小值,因而聚类准确率不高。建立使用分治策略解决聚类问题的算法架构,充分考虑数据本身特性并对传统的FCM算法进行改进,标准数据集的实验结果表明这种基于分治策略的FCM聚类算法较好地提高了算法的聚类准确率,加快了收敛速度。