论文部分内容阅读
针对传统的超分辨率(SR)图像重建方法需要多幅亚像素图像配准带来的配准误差以及高成本问题,本文将目前迅速发展的压缩感知(CS)理论引入SR成像,利用大多数自然图像普遍具有的稀疏性,提出一种基于CS的单幅图像SR重建方法,不需要其它任何额外的信息采集,可以在单次拍摄条件下捕获的充分数据实现图像的SR重建。模拟实验表明,本文提出的方法在重建效果和重建时间方面显著优于耦合字典学习(CDT)方法,在主观视觉质量及其客观信噪比(SNR)度量方面都具有优势,且实现方法较为简单,具有重要的应用前景。