论文部分内容阅读
由于传统的人工萤火虫算法(Glowworm Swarm Optimization,GSO)存在收敛速度慢和易陷入小区域搜索等缺点,提出了一种基于极值域萤光素值人工萤火虫算法(Extreme-Domain Glowworm Swarm Optimization,EDGSO)。在萤光素值更新过程中,算法限定了荧光素的变化范围,修改萤光素值极值域的上下限,以防止过早的陷入局部搜索。仿真实验的结果证明新的算法既能有效的防止过早陷入局部最优解的现象发生,同时又具备较强的全局搜索能力,进而使传统的人工萤火虫算法的性能得到较大的优化。
Due to the shortcomings of the traditional artificial Glowworm Swarm Optimization (GSO), such as slow convergence speed and easy to fall into small area search, a new algorithm based on Extreme-Domain Glowworm Swarm Optimization (EDGSO ). During the luciferin update, the algorithm defines the range of fluorescein and modifies the upper and lower limits of the extreme luciferin range to prevent premature fall-in to the local search. Simulation results show that the new algorithm can not only prevent the premature convergence of the local optimal solution, but also has strong global search ability, which can greatly optimize the performance of the traditional artificial firefly algorithm.