论文部分内容阅读
可能性C均值算法(PCM)是为了克服模糊C均值算法对噪声的敏感性而提出来的,但是它也存在一些缺陷,如易陷入局部最优,对初始条件敏感,导致聚类结果一致性等问题。针对以上问题,通过引进粒子群算法对其进行改进可以有效地避免这些问题,即提出了基于粒子群优化的可能性C均值聚类算法(PSO-PCM)。基于粒子群优化的可能性C均值聚类方法首先对编码过的数据点进行优化,然后对该方法产生的中心点进行聚类,在聚类的过程中根据适应度函数再进行调节。通过对给定数据集的聚类测试,结果表明,基于粒子群优化的可能性C均值聚类方法