Multi-agent systems for simulating traffic behaviors

来源 :Chinese Science Bulletin | 被引量 : 0次 | 上传用户:baei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Multi-agent systems allow the simulation of complex phenomena that cannot be easily described analytically. As an efficient tool, the agent-oriented traffic models have emerged to investigate vehicular traffic behaviors. In this article, a new agent-based traffic simulation model is proposed for solving the traffic simulation problems. A vehicle with the driver is represented as a composite autonomous agent in this model. Different from the classical car-following principles, vehicle-agent moving approaches are pro- posed instead of particle-hopping techniques. This model defines reasonable acceleration and deceleration rates at any certain condition. In this simulation, this can offer a natural, even cognitive way to follow the leader and switch lane. The simulation results have verified that this model has achieved more realistic results without loss of accuracy than those obtained from the cel- lular automata traffic models. This model can provide better simulation performance than the traditional vehicle-following models which are used to investigate the nonequilibrium traffic flow. A comparison of the real flow with the simulated freeway flow and lane capacity highlights the validness of this model. Multi-agent systems allow the simulation of complex phenomena that can not be easily described analytically. As an efficient tool, the agent-oriented traffic models have emerged to investigate vehicular traffic behaviors. In this article, a new agent-based traffic simulation model is proposed for solving the traffic simulation problems. A vehicle with the driver is represented as a composite autonomous agent in this model. Different from the classical car-following principles, vehicle-agent moving approaches are pro- posed instead of particle-hopping techniques. This model reason reasonable acceleration and deceleration rates at any certain condition. In this simulation, this can offer a natural, even cognitive way to follow the leader and switch lane. those obtained from the cel- lular automata traffic models. This model can provide better simulation performance than the traditional vehicle-following models which are used to investigate the nonequilibrium traffic flow. A comparison of the real flow with the simulated freeway flow and lane capacity highlights the validness of this model.
其他文献