论文部分内容阅读
传统的基于BP神经网络的非均匀性校正算法由于采用了四邻域均值代替期望值,使得图像呈现低通的特性.本文针对红外焦平面阵列成像系统,对传统的神经网络算法进行了改进,将加权中值滤波处理后的结果作为期望输出,并在神经网络算法中权值修正时加入了动量项,加快了算法的收敛速度.通过仿真实验,与传统的神经网络相对比,校正效果得到明显的改善.