论文部分内容阅读
在智能交通系统中,进行实时、准确的交通流预测是交通控制和交通流诱导的关键之一,直接影响交通控制和交通诱导的效果。基于支持向量机,提出了一种Lagrange支持向量回归机的交通流量短时预测模型,能够实现对交通流量的有效预测。仿真试验表明,Lagrange支持向量回归机具有良好的泛化性能、更快的迭代速度,预测结果优于改进的BP神经网络。