人脸合成技术综述

来源 :计算机科学与探索 | 被引量 : 0次 | 上传用户:Joetty
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
人脸合成由于其应用与技术价值,是机器视觉领域的热点之一,而近年来深度学习的突破性进展使该领域吸引了更多关注。将该领域的研究分为四个子类:人脸身份合成、人脸动作合成、人脸属性合成与人脸生成,并系统地总结了这些子类的发展历程、现状,以及现有技术存在的问题。首先针对人脸身份合成,从图形学、数字图像处理与深度学习三个角度总结了各自的合成流程,对关键技术原理进行了详细的解释与分析。其次将人脸动作合成进一步分为利用标签驱动的表情编辑与利用真实人脸驱动的人脸重演,并指出了各自领域中存在的缺陷与难题。然后介绍了基于
其他文献
针对光照不均匀场景,提出了一种自适应图像增强算法。根据Retinex理论,采取中心环绕法,利用高斯连续卷积来提取场景的光照分布情况。同时,统计输入图像低亮度区域的大小。构造了一种自适应伽马矫正函数,取光照分布情况与低亮度区域内亮度值中位数的比值作为参数,对图像进行伽马校正。高光照区域参数大于1,对亮度起抑制作用,低光照区域参数小于1,对亮度起增强作用。将顶帽变换后图像和伽马矫正后的图像叠加。顶帽变
在导弹智能突防的过程中,从海量的遥感图像数据中检测敌方反导阵地具有极大的应用价值。由于弹载部署环境算力有限,设计了一种兼顾轻量化,检测精确率以及检测速度的遥感目标检测算法。制作了典型遥感军事目标数据集,通过K-means算法对数据集聚类分析。利用MobileNetV2网络代替YOLOv3算法的主干网络,保证网络的轻量化和检测速度。提出了适用于遥感目标特性的轻量化高效通道协同注意力模块和目标旋转不变
针对模糊随机环境下智能工厂建设方案优选问题,从智能、产销、辅助3个支持维度设计评估准则体系,考虑区间数准则权重与正态云准则值,提出基于偏差一致性原理与余弦逼近度的新方法.首先,根据正态云与正态随机变量间的关系,将正态云决策矩阵转化为广义正态随机决策矩阵,通过正态云的3σ原则生成区间数决策矩阵;然后,检验区间准则权重向量的合理性和可行性,运用熵权法与偏差一致性原理构建非线性多目标规划模型,求取综合准则权重向量;进一步,基于规范化区间数决策矩阵,考虑各方案与理想方案的方向与位置差异,计算改进型加权区间余弦相似