论文部分内容阅读
主要目的是分析在原始数据具有随机误差的情况下,利用泰斯公式进行正逆问题计算时,公式本身对误差的传递作用,即对泰斯公式的性态进行分析。研究中采用了函数对数据随机误差传递作用的随机性分析方法。通过较为简单的数学推导,建立了泰斯公式正逆计算问题的原始数据与计算结果所具有随机误差的统计参数之间的近似关系式,并推导出了两类计算问题的条件数。指出在u值较小的情况下,计算μ的问题属于“病态”的;在u=0.438点及其附近,计算T的问题为“病态”的;在u值和μ的相对误差与T的相对误差的比值很大的情况下,正问题为“病态”的。其它条件下的计算问题属于“良态”的。据此建议利用抽水试验后期资料计算T值,利用前期资料计算μ值。另一方面,还提出了在原始数据的误差为已知的情况下,进行误差估计的方法
The main purpose of this paper is to analyze the transfer function of the formula itself in the calculation of positive and negative problems using the Tess formula under the condition that the original data has random errors, that is, analyze the behavior of the Tess formula. In the study, a stochastic analysis method of the random error of data transfer function was used. Through the simple mathematical derivation, the approximate relation between the original data of the positive and negative of the Tess equation and the statistical parameters of the random error of the calculation result is established, and the condition numbers of two kinds of calculation problems are deduced. It is pointed out that the problem of calculating μ is “pathological” when the value of u is small; the problem of calculating T is “pathological” at u = 0.438 and its vicinity; when the relative error between u and μ and If the ratio of T’s relative error is large, the positive problem is “morbid”. Computation problems under other conditions are “good”. Accordingly, it is suggested to calculate the T value by using the later data of pumping test and calculate the value of μ using the previous data. On the other hand, a method of error estimation is also proposed in the case where the error of the original data is known