论文部分内容阅读
为了在早期能够发现肺癌,降低对肺结节的漏诊率,提高病人的生存率;基于模糊C均值聚类的算法,利用直方图统计特性对数据进行优化,在此基础上利用像素的邻域特性,将数据样本对各聚类中心约束条件为1改变为隶属度之和为样本总数;用改进的FCM对肺实质图像进行分割,将分割后的图像应用区域分割算法去除小面积区域,利用肺结节的关键特征,提取可疑区域;运用改进算法后,区域分割效果更好;仿真结果证明算法很好地将"线"形或分枝状结构的血管去除;改进的FCM有很好的实时性和对噪声的鲁棒性,分离血管后,将可疑区域在原图标记出来