论文部分内容阅读
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction,a dynamic equation for vehicle braking in the longitudinal direction is established.A four or fiveorder Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force.The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node,and a dynamic response analysis of the seismically isolated bridge under the vehicle’s braking force is carried out using ANSYS,a universal finite element analysis software.According to the results,seismic isolation design results in a more rational distribution of braking force among piers;the influence of the initial braking velocity on the vehicle braking force is negligible;the location where the first wheel set leaves the bridge is the most unfavorable parking location;a seismic isolation bridge bearing constructed according to typical design methods enters into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended;the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.
In order to study the dynamic performance of seismically isolated bridges under the most unfavorable loads in the longitudinal direction, a dynamic equation for vehicle braking in the longitudinal direction is established. A four or five order Runge-Kutta method is adopted to obtain the time-history response of a wheel set under braking force. The quadratic discretization method is then used to transform this time-history into a braking and bending force time-history of a structural fixed node, and a dynamic response analysis of the seismically isolated bridge under the vehicle’s braking force is carried out using ANSYS, a universal finite element analysis software. According to the results, seismic isolation design results in a more rational distribution of braking force among piers; the influence of the initial braking velocity on the vehicle braking force is negligible; the location where the first wheel set leaves the bridge is the most unfavorable parking location; a seismic isolation bridge bearing constructed according to typical design methods into a yield stage under the braking force, while the shearing force at the bottom of the pier declines as the isolation period is extended; the design requirements can be met when the yield displacement of the seismic isolation bearing is less than 5 mm and the yield strength is greater than the braking force.