不确定支持向量机在洪水预测模型中的应用

来源 :兰州理工大学学报 | 被引量 : 0次 | 上传用户:sheryme
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
准确及时地进行洪水预测对洪水预报、洪水实时调度及水资源的合理调度起着非常关键的作用.提出一种粗糙集理论和支持向量机相结合的洪水预测模型,利用粗糙集理论对支持向量机的输入数据集进行约简预处理,通过发现数据间的关系去掉冗余输入信息,简化输入空间的表达信息,提高支持向量机训练的速度,获得较高的预测精度.实验结果表明,该模型能提高支持向量机训练的速度,获得较高的预测精度.
其他文献
为了在提高文本分类效率和提升分类速度问进行平衡,综合考虑SVM决策树的深度、均衡度、构造方式、类内样本数、类间相似度等对分类结果的影响,提出针对海量文本多分类问题的SVM