论文部分内容阅读
AIM: To investigate the radiation response of various human tumor cells and normal liver cells. METHODS: Cell lines of human hepatoma cells (SMMC-7721), liver cells (L02), melanoma cells (A375) and cervical tumor (HeLa) were irradiated with 60Co γ-rays. Cell survive was documented by a colony assay. Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A. RESULTS: Linear quadratic survival curve was observed in all of four cell lines, and dose-dependent increase in radiation-induced chromatid and isochromatid breaks were observed in GB2B phase. Among these four cell lines, A375 was most sensitive to radiation, while, L02 had the lowest radiosensitivity. For normal liver cells, chromatid breaks were easy to be repaired, isochromatid breaks were difficult to be repaired. CONCLUSION: The results suggest that the y-rays induced chromatid breaks can be possibly used as a good predictor of radiosensitivity, also, unrejoined isochromatid breaks probably tightly related with cell cancerization.
METHODS: Cell lines of human hepatoma cells (SMMC-7721), liver cells (L02), melanoma cells (A375) and cervical tumor (HeLa) were irradiated with 60Co γ-rays. Cell survive was documented by a colony assay. Chromatid breaks were measured by counting the number of chromatid breaks and isochromatid breaks immediately after prematurely chromosome condensed by Calyculin-A. RESULTS: Linear quadratic survival curve was observed in all of Four cell lines, and dose-dependent increase in radiation-induced chromatid and isochromatid breaks were observed in GB2B phase. A375 was most sensitive to radiation, while, L02 had the lowest radiosensitivity. For normal liver cells, chromatid breaks were easy to be repaired, isochromatid breaks were difficult to be repaired. CONCLUSION: The results suggest that the y-rays induced chromatid breaks can be possibly used as a good predict or of radiosensitivity, also, unrejoined isochromatid breaks probably tightly related with cell cancerization.