论文部分内容阅读
对于一类典型的切向梳齿驱动型微陀螺,建立两自由度、具有刚度立方非线性和参数激励驱动的微陀螺系统动力学模型。考虑主参数共振和1∶1内共振的情况,利用多尺度法获得周期解的解析形式,并利用分岔理论,得到Hopf 分岔条件,结合数值模拟系统的动力学响应,揭示系统参数对驱动和检测模态振幅和分岔行为的影响机制。研究结果表明,在1∶1内共振和较大的载体角速度下,激励频率的变化容易引起微陀螺振动系统的多稳态解、振幅跳跃现象和概周期响应等复杂动力学行为。