论文部分内容阅读
The dissipative sensing based on a self-interference microring resonator composed of a microring resonator and a U-shaped feedback waveguide is demonstrated experimentally. Instead of a frequency shift induced by the phase shift of the waveguide or the microcavity, the dissipative sensing converts the phase shift to the effective external coupling rate, which leads to the change of linewidth of the optical resonance and the extinction ratio in the transmission spectrum. In our experiment, the power dissipated from a microheater on the feedback waveguide is detected by the dissipative sensing mechanism, and the sensitivity of our device can achieve 0.22 dB/mW. This dissipative sensing mechanism provides another promising candidate for microcavity sensing applications.