论文部分内容阅读
在对暂态电压信号进行经验模态分解(EMD)基础上,结合奇异值分解(SVD)及信息熵理论提出了利用高频暂态分量的奇异值熵实现故障选相。此方法对采集到的故障后电压信号求取EMD奇异值熵,并比较三相间熵值的大小来识别故障类型和判别故障相。基于Matlab环境,对一典型500kV线路进行故障类型选相的仿真.结果表明该方法不受过渡电阻、故障位置、故障初始角和噪声强度等因素影响,能够快速准确识别各类故障。