论文部分内容阅读
针对训练模式对的小幅摄动可能对模糊神经网络的性能产生不利影响,提出了单体模糊神经网络对训练模式对摄动的鲁棒性概念,并就训练模式对的最大保序摄动的情形对单体模糊神经网络(MFNN)进行了具体分析,一般的模糊神经网络对训练模式对摄动的鲁棒性概念可类似定义。理论研究表明:当训练模式对发生最大γ保序摄动时,在h=5的条件下,单体模糊神经网络对训练模式对的摄动全局拥有好的鲁棒性,这将有助于MFNN系统的性能分析、学习算法的选择和模式对获取。