论文部分内容阅读
摘要:以火法炼铜全生命周期过程为研究对象,采用生命周期评价(LCA)方法,定量评价不同熔炼工艺生产铜过程的能源消耗和温室气体排放,并应用情景分析法,对2020年我国火法炼铜不同工艺技术结构下的能耗与碳排放强度进行比较,旨在为铜冶炼行业的结构调整与优化升级提供决策支持。结果表明,基于鼓风熔炼、闪速熔炼和熔池熔炼工艺的火法生产铜过程的能耗分别为147.80×103,96.68×103,104.20×103MJ;其碳排放强度分别为15.32×103,8.99×103,10.01×103kg CO2当量。设定的4种情景的能耗分别为111.60×103,103.37×103,101.19×103,99.69×103MJ;其碳排放强度分别为10.87×103,9.87×103,9.60×103,9.40×103kg CO2当量。由此可知,传统工艺鼓风炉熔炼较闪速熔炼及熔池熔炼的能耗更高,且导致了更多的温室气体排放。因此,大力发展闪速熔炼及熔池熔炼技术对降低铜生命周期的能耗及碳排放具有重要意义,彻底淘汰传统熔炼工艺,推广先进熔炼技术是减少火法铜生产环境影响的迫切任务。
关键词:生命周期评价;铜;情景分析;能耗;碳排放
中图分类号 X757:X820 文献标识码 A 文章编号 1002-2104(2012)04-0046-05 doi:10.3969/j.issn.1002-2104.2012.04.009
火法炼铜是铜冶炼的主要工艺,目前我国铜产量的98%以上由火法冶炼获得[1]。2008年我国精铜产量为377.9万t,消费量达到480.6万t,已成为全球最大的精铜生产国和消费国[2]。火法炼铜过程以及由此带来的能源消耗及温室效应问题已不容忽视。
生命周期评价(Life Cycle Assessment)作为一种重要的环境管理工具,可用于火法铜生产过程环境影响的评估,对于改善生产工艺,减少环境污染具有重要的意义。由于目前我国采选矿、吹炼和精炼工艺设备差别不大,火法铜生产的能耗及碳排放主要与在熔炼工艺的技术水平相关。因此,根据目前行业的工艺技术现状,重点关注鼓风炉熔炼、闪速炉熔炼和熔池熔炼3种主要工艺,运用生命周期评价方法对铜生产过程,即从采矿到电解精炼过程的能耗及碳排放强度进行评价。
情景分析法(Scenario Analysis)是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细、严密的推理和描述来构想未来各种可能的方案[3]。S. Alvarado针对世界最大的铜生产国智利,对时间尺度为25年的能耗与温室气体排放量展开研究,并设定两种不同情景进行对比[4];WilhelmKuckshinrichs等基于过程的局部均衡模型,对全球铜流动产生的CO2和SO2进行分析[5]。国内已有姜金龙等运用生命周期评价方法,对火法、湿法生产金属铜过程及共生矿石生产电解镍/铜的环境协调性进行了研究[6–7]。韩明霞等运用情景分析对铜冶炼的污染物排放进行分析[1]。本文通过情景分析,对2020年我国火法铜冶炼的主要工艺技术结构进行模拟,对不同情景下的生命周期评价结果进行比较,筛选出能耗与碳排放最低的方案,为我国火法铜冶炼行业的环境管理提供决策支持。
1 研究方法
1.1 生命周期评价
生命周期评价方法针对从产品最初的原材料采掘到产品用后最终废弃物处理(产品系统),进行全过程的跟踪、定量分析与评价[8]。本文基于德国PE公司开发的生命周期评价软件GaBi 4,对不同熔炼工艺下的铜冶炼能耗及碳排放进行评价。
1.1.1 系统边界
本研究以火法炼铜为对象,从我国铜生产的实际情况出发,以生产1 000 kg精铜为功能单位,定量计算其生产过程中的能耗及碳排放。研究范围包括矿石的采选、运输、干燥、熔炼、转炉吹炼、阳极炉精炼、电解精炼等工序。由于目前的采选矿、吹炼和精炼工艺设备差别不大,本研究将熔炼技术细化,分别对具有代表性的密闭鼓风熔炼、闪速熔炼和熔池熔炼工艺下的铜冶炼过程进行比较。系统边界如图1所示。
图1 火法炼铜生产流程和系统评价边界
Fig.1 Process and systemboundary of pyrometallurgical copper production
注:图1中熔炼工序可分为密闭鼓风炉熔炼、闪速熔炼、熔池熔炼3种。其中密闭鼓风炉熔炼还包括燃料焦炭的生产;闪速熔炼前包括精矿干燥环节,以及辅料柴油和重油的生产;熔池熔炼过程还包括电耗、原煤、重油的生产。
研究系统内,品位约为1%的铜矿石在经过熔炼、转炉吹炼、阳极炉精炼等工序后,电解出精度约为99.9%的精铜。图1体现了铜生产的各个工序中其他辅助能源及原料的生产情况,标注出重要的中间产物,细化了该研究的具体边界。
1.1.2 数据来源
本文评价中所使用的数据主要来源:①我国两家铜生产企业实际数据;②公开出版的文献资料数据;③PEGaBi数据库。详见表1。
1.1.3 基本假设
在开展火法铜生产的生命周期评价时,假设生产所需的铜矿石全部来自国内开采,铜矿石的平均运输距离为50km;采矿炸药、选矿药剂、电解添加剂等由于用量较小,在影响评价阶段忽略其所造成的环境影响;不考虑熔炼及吹炼阶段的烟气制酸过程、炉渣贫化及阳极泥回收工序;转炉烟尘、阳极炉烟尘和炉渣等固废通过内部再循环方式返回生产过程。
1.1.4 量化方法
本研究选用的能耗和碳排放的量化方法如表2所示。
1.1.5 能源清单
经整理得到我国火法铜生产的能源清单如表3所示。
表1 生命周期清单数据来源
Tab.1 Life cycle inventory data sources
注:1.《选矿设计手册》,北京:冶金工业出版社,2007;2.《重有色金属冶炼设计手册·铜镍卷》,北京:冶金工业出版社,1996
表2 能耗和碳排放量化方法
Tab.2 The quantified method for energy consumption and carbon emissions
表3 火法炼铜生产的能源清单
Tab.3 The energy inventory of pyrometallurgical copper production
1.2 情景设定
据行业有关资料,2007年我国铜冶炼的熔池熔炼工
艺约占42%,闪速熔炼工艺约占35%[9]。本研究以2007
年为情景基准年,根据近几年火法铜冶炼技术的发展趋势,将2020年定为情景年,逐渐增加先进工艺技术比重,淘汰落后技术,进行情景设定(见表4),分析不同情景下能耗及碳排放情况。
表4 2020年我国火法炼铜冶炼情景设定(%)
Tab.4 The scenario of China’s pyrometallurgical copper in 2020
关键词:生命周期评价;铜;情景分析;能耗;碳排放
中图分类号 X757:X820 文献标识码 A 文章编号 1002-2104(2012)04-0046-05 doi:10.3969/j.issn.1002-2104.2012.04.009
火法炼铜是铜冶炼的主要工艺,目前我国铜产量的98%以上由火法冶炼获得[1]。2008年我国精铜产量为377.9万t,消费量达到480.6万t,已成为全球最大的精铜生产国和消费国[2]。火法炼铜过程以及由此带来的能源消耗及温室效应问题已不容忽视。
生命周期评价(Life Cycle Assessment)作为一种重要的环境管理工具,可用于火法铜生产过程环境影响的评估,对于改善生产工艺,减少环境污染具有重要的意义。由于目前我国采选矿、吹炼和精炼工艺设备差别不大,火法铜生产的能耗及碳排放主要与在熔炼工艺的技术水平相关。因此,根据目前行业的工艺技术现状,重点关注鼓风炉熔炼、闪速炉熔炼和熔池熔炼3种主要工艺,运用生命周期评价方法对铜生产过程,即从采矿到电解精炼过程的能耗及碳排放强度进行评价。
情景分析法(Scenario Analysis)是在对经济、产业或技术的重大演变提出各种关键假设的基础上,通过对未来详细、严密的推理和描述来构想未来各种可能的方案[3]。S. Alvarado针对世界最大的铜生产国智利,对时间尺度为25年的能耗与温室气体排放量展开研究,并设定两种不同情景进行对比[4];WilhelmKuckshinrichs等基于过程的局部均衡模型,对全球铜流动产生的CO2和SO2进行分析[5]。国内已有姜金龙等运用生命周期评价方法,对火法、湿法生产金属铜过程及共生矿石生产电解镍/铜的环境协调性进行了研究[6–7]。韩明霞等运用情景分析对铜冶炼的污染物排放进行分析[1]。本文通过情景分析,对2020年我国火法铜冶炼的主要工艺技术结构进行模拟,对不同情景下的生命周期评价结果进行比较,筛选出能耗与碳排放最低的方案,为我国火法铜冶炼行业的环境管理提供决策支持。
1 研究方法
1.1 生命周期评价
生命周期评价方法针对从产品最初的原材料采掘到产品用后最终废弃物处理(产品系统),进行全过程的跟踪、定量分析与评价[8]。本文基于德国PE公司开发的生命周期评价软件GaBi 4,对不同熔炼工艺下的铜冶炼能耗及碳排放进行评价。
1.1.1 系统边界
本研究以火法炼铜为对象,从我国铜生产的实际情况出发,以生产1 000 kg精铜为功能单位,定量计算其生产过程中的能耗及碳排放。研究范围包括矿石的采选、运输、干燥、熔炼、转炉吹炼、阳极炉精炼、电解精炼等工序。由于目前的采选矿、吹炼和精炼工艺设备差别不大,本研究将熔炼技术细化,分别对具有代表性的密闭鼓风熔炼、闪速熔炼和熔池熔炼工艺下的铜冶炼过程进行比较。系统边界如图1所示。
图1 火法炼铜生产流程和系统评价边界
Fig.1 Process and systemboundary of pyrometallurgical copper production
注:图1中熔炼工序可分为密闭鼓风炉熔炼、闪速熔炼、熔池熔炼3种。其中密闭鼓风炉熔炼还包括燃料焦炭的生产;闪速熔炼前包括精矿干燥环节,以及辅料柴油和重油的生产;熔池熔炼过程还包括电耗、原煤、重油的生产。
研究系统内,品位约为1%的铜矿石在经过熔炼、转炉吹炼、阳极炉精炼等工序后,电解出精度约为99.9%的精铜。图1体现了铜生产的各个工序中其他辅助能源及原料的生产情况,标注出重要的中间产物,细化了该研究的具体边界。
1.1.2 数据来源
本文评价中所使用的数据主要来源:①我国两家铜生产企业实际数据;②公开出版的文献资料数据;③PEGaBi数据库。详见表1。
1.1.3 基本假设
在开展火法铜生产的生命周期评价时,假设生产所需的铜矿石全部来自国内开采,铜矿石的平均运输距离为50km;采矿炸药、选矿药剂、电解添加剂等由于用量较小,在影响评价阶段忽略其所造成的环境影响;不考虑熔炼及吹炼阶段的烟气制酸过程、炉渣贫化及阳极泥回收工序;转炉烟尘、阳极炉烟尘和炉渣等固废通过内部再循环方式返回生产过程。
1.1.4 量化方法
本研究选用的能耗和碳排放的量化方法如表2所示。
1.1.5 能源清单
经整理得到我国火法铜生产的能源清单如表3所示。
表1 生命周期清单数据来源
Tab.1 Life cycle inventory data sources
注:1.《选矿设计手册》,北京:冶金工业出版社,2007;2.《重有色金属冶炼设计手册·铜镍卷》,北京:冶金工业出版社,1996
表2 能耗和碳排放量化方法
Tab.2 The quantified method for energy consumption and carbon emissions
表3 火法炼铜生产的能源清单
Tab.3 The energy inventory of pyrometallurgical copper production
1.2 情景设定
据行业有关资料,2007年我国铜冶炼的熔池熔炼工
艺约占42%,闪速熔炼工艺约占35%[9]。本研究以2007
年为情景基准年,根据近几年火法铜冶炼技术的发展趋势,将2020年定为情景年,逐渐增加先进工艺技术比重,淘汰落后技术,进行情景设定(见表4),分析不同情景下能耗及碳排放情况。
表4 2020年我国火法炼铜冶炼情景设定(%)
Tab.4 The scenario of China’s pyrometallurgical copper in 2020