论文部分内容阅读
工业性浮选试验早已发现,浮选过程的速度遵循下列经验的速度方程: dR/dt=K(R_i-R)/t 其积分式为: log 1/R_i-R=Klogt+loga式中R为时间t时的矿物(或金属)的累计回收率;K是比例常数或内在的速度常数;a是截距或者是t=1即logt=0时的起始浮选回收率;R_i是指某矿石中可以获得的矿物的最大回收率。 R_i可以通过作图方法求得。在1/R_i-R对t的双对数座标图上,正确的R_i值可绘出一条直线。 R_i一经确定后,可以很容易地绘出不同浮选条件,例如浮选药剂、pH、磨矿细度、矿浆密度等等不同条件下的1/Ri-R对t的曲线。这些曲线提供了和上述这些浮选条件有关的浮选速度和回收率的信息。除了经验方程式中三个参数R_i、K、a以外,第四个参数是I,定义为I=R_i-R_5/R_5,R_5是时间为t=5分时的矿物回收率,它反映了矿石的特徵。这些参数可以用来描述和比较不同类型的矿石。
It has been found in industrial flotation tests that the speed of the flotation process follows the empirical velocity equation: dR / dt = K (R_i-R) / t The integral is log 1 / R_i-R = Klogt + loga where R Is the cumulative recovery of the mineral (or metal) at time t; K is the proportional or intrinsic rate constant; a is the intercept or the initial flotation recovery at t = 1 ie log t = 0; The maximum recovery of minerals available in an ore. R_i can be calculated by drawing method. On the double logarithmic plot of 1 / R_i-R versus t, the correct R_i value draws a straight line. Once R_i is established, it is easy to plot the 1 / Ri-R vs. t for different flotation conditions such as flotation reagents, pH, grind fineness, pulp density, and the like. These curves provide information about the flotation rate and recovery rate associated with these flotation conditions. In addition to the empirical equation of the three parameters R_i, K, a, the fourth parameter is I, defined as I = R_i-R_5 / R_5, R_5 is time t = 5 minutes mineral recovery rate, which reflects the ore feature. These parameters can be used to describe and compare different types of ores.