论文部分内容阅读
摘要:文章分析探讨市政道路砂土路基施工,提出了适宜的压实机械组配及操作工艺,对确保工程质量,加快施工进度有重要意义,具有较大的实用价值。
关键词:市政道路;砂土路基;施工
在市政道路砂土路基施工时,要充分掌握砂土的特性,寻找最好的施工方法,在保证质量的前提下,加快施工进度。
1砂土的特性
砂土水稳定性好、透水性强、沉陷快、饱水易压实、毛细水上升高度小,是一种良好的路基填料。但砂土存在塑性指数极低,不易压实,失水后易滑坍,干稳定性差的缺陷。
砂土级配不良,天然条件下不可能自己形成较紧密的土体,只有通过饱水压实才能缩小颗粒间距,形成一定结构强度。
由于砂土与粘土在土质、力学性质各项技术指标上的差异,在施工中砂土与粘土的具体操作及各项控制指标也存在着很大差别。因此,砂土的压实控制便成了施工中~个最棘手的问题,也是工程中最薄弱的环节。
2施工中常遇到的问题,解决方法、控制、要求
压实效果的好坏,是直接影响工程质量优劣的重要因素。砂土路基在压实过程中经常存在压实度达不到要求,表面松散、起皮,含水量不易控制等问题。高密实度性能可以在正确选择压实方法,所采用的压实机械参数和压实工况的基础上达到。主要从以下几个方面来重点控制,
2.1機械配置
施工机械的配备要满足施工需要,作业方法简单快速,经济合理,机械必须要配套。机械的数量则要从工程的规模、性质、施工要求、资金来源、配套设施、工期长短等方面来考虑配备。
在市政道路施工前,要根据各种试验数据,正确的选择压路机。选择压路机的主要根据是:被压材料的种类、性质、颗粒组成、含水量和铺层厚度及施工条件、工程进度以及所要求的压实度、平整度和各种压路机的技术性能等,砂土的抗剪切能力是非常差的,所以羊足碾、三脚碾是不适用于砂土压实的。大型振动压路对压实效果并不显著,激振力40 t的振动压路机在碾压两遍、三遍、四遍的压实度增长并不明显,是不经济适用的。对于砂土的压实,可以选用振动压路机和轮胎压路机,且振动压路机应选择22 t以内的轻型压路机为宜,轮胎压路机则应选择18 t以上的稍大吨位的压路机效果更好。
平地机与推土机的选择要综合考虑,因为砂土的摊铺整平是很容易的,所以在这两类机械的选择上,可以互补。另外,砂土施工时含水鼍控制范围较小,洒水车配备要充足,一般两台足够。在必要的时候(如砂土的天然含水量大于24%以上时),可以增加旋耕拌和机用以翻松晾晒。
综上所述,每套机械的组合为:两台16 t~22 t振动压路机,一台18 t以上胶轮压路机,一台120 kW以上推土机,一台160kw以上平地机,两台洒水车,另可增加50型旋耕机一台。
2.2含水量控制
砂土路基施工时有一句行话:“大雨大干。小雨小干,不下雨洒水于。”可见含水量对砂土路基压实的重要性。低液限土的击实曲线,较粘性类土来说两侧坡度较陡(砂土的最大干密度一般在1.68 g/cm3~1.79 g/cm3),也就是施工时含水量控制范围更小,因此,施工时含水量控制要求较高,过大、过小都容易引起松散、起皮。
砂土和粉砂土现场施工时,水分容易蒸发,所以在最佳含水量±2%并不能达到压实度要求。含水量比最佳含水量大时更容易压实。但就低液限粘土而言,如果含水量过大,机械振动会出现液化现象。相对其他土质更容易出现“软弹”现象,因此,气温较高且空气干燥时,砂土碾压时含水量控制在比最佳含水量高出4%~6%,雨季施工时控制在高出3%~5%为宜。
当土的含水量偏低时,一般做法是洒水车洒水后拌和。但这种作法由于水的冲力,在松土上洒水,水容易在表面形成水窝。在光面上洒水,水流淌造成浪费,渗透不到底部,效果不佳,而且造成含水量不均匀。对于纯砂土路基,采用在路基旁边打井的方法解决水源问题,这样既加快了施工速度,还节省了施工费用,比洒水车洒水节省2/3费用。
在原状土天然含水量很大时,如24%以上时,就应当用旋耕拌和机翻拌晾晒,在含水量大于最佳含水量5%左右时马上碾压。
2.3作业方法
作业段长度在100 m以内,主要是考虑砂土的水分散失快,如果压实不及时,那么在后来碾压时,前段的含水量已经偏低,造成了含水量的不均匀,会给压实造成一定的困难。压实层厚控制在25 cm之内。
整平后,先由振动压路机稳压一遍,一般压实度达80%左右,接着振动压路机对砂土碾压4遍~6遍,振动碾压时宜采用2挡(2.0 km/h~2.5 km/h),碾压轮迹相互搭接。轮迹重叠的方法是由宽到窄,再由窄到宽。碾压时,先错1/2轮弱振1遍,然后错1/3轮强振碾压直到压实度基本合格为止(一般4遍),再错1/2轮弱振1遍。机械不宜在碾压过的路基上掉头。
振动碾压后,再用轮胎压路机压1遍~2遍,轮胎压路机正好压实表层不能被振动压路机压实的2 cm,保证表层压实度及表面平整度。如此错轮方法能最大限度地保证表面平整度,消除轮迹。
对于路基局部边角地带,如桥台或挡墙后背,压路机不能碾压的部位,应采用小型手扶式振动压路机或采用蛙式夯实机进行碾压夯实,或采用灌水法。碾压完毕,检验压实度、平整度、标高、宽度、横坡度,各项指标合格后,及时进行下一层的填筑施工,尽可能减少成型的砂土路基失水。当不能及时填筑下一层砂土时,应注意及时洒水,保持足够的水分。在碾压过程中要突出快速作业,这样的压实会更容易达到要求。
2.4其他方面的要求
目前常采用重型标准击实法来测定土的最佳含水量和最大密实度,击实标准的准确性对路基施工来说就是一杆称,击实试验不准确,检查压实度就失去了意义。击实试验的土样要能够充分代表本段路基施工的情况,用来试验的仪器应当是经过标定和检定,所得出的击实数据应当是绝对可靠的。砂土的现场检测比粘土要更加严格,避免误差超过允许范围。
3砂土路基的压实度检测对填砂路基压实度,采用什么方法进行检测更为准确,我们在施工中对灌砂法、环刀法进行同点对比试验。环刀法快捷方便,尤其是极细砂在不失水状态下,用环刀法测试较为快捷。但在取样时有一定的难度,也可能引起较大的误差。灌砂法是最常见的实验方法之一,操作简单,结果较为精确。
4遗留的问题
1)砂土路基的防护。由于砂土受水流冲刷非常容易流失塌陷,所以采用什么样的防护形式就非常值得思考,而且如果是高填方路基,则更加需要保证路基不受雨水的冲蚀,保证其稳定性。
2)砂土掺灰后的CBR值较低,甚至不能达到规范的要求,那么砂土地区底基层施工就有一定的难度,采取什么样的处理方法值得研究。
3)砂土路段与粘土路段的衔接。砂土与粘土路基在后期的沉降是有很大差异的,要保证其衔接接头的平整度,不至于发生错台将是施工控制的一项关键难点。
4)干旱缺水地区砂土路基的施工。以上是在有充足水源的情况下施工,倘若在干旱缺水地区施工,如何达到其压实度将是一项重要的课题。
5结语
经过实践,我们提出了适宜的压实机械组配及操作工艺,对确保工程质量,加快施工进度有重要意义,具有较大的实用价值。但还存在一些疑问,需要在以后的施工中不断的试验、总结和完善。
关键词:市政道路;砂土路基;施工
在市政道路砂土路基施工时,要充分掌握砂土的特性,寻找最好的施工方法,在保证质量的前提下,加快施工进度。
1砂土的特性
砂土水稳定性好、透水性强、沉陷快、饱水易压实、毛细水上升高度小,是一种良好的路基填料。但砂土存在塑性指数极低,不易压实,失水后易滑坍,干稳定性差的缺陷。
砂土级配不良,天然条件下不可能自己形成较紧密的土体,只有通过饱水压实才能缩小颗粒间距,形成一定结构强度。
由于砂土与粘土在土质、力学性质各项技术指标上的差异,在施工中砂土与粘土的具体操作及各项控制指标也存在着很大差别。因此,砂土的压实控制便成了施工中~个最棘手的问题,也是工程中最薄弱的环节。
2施工中常遇到的问题,解决方法、控制、要求
压实效果的好坏,是直接影响工程质量优劣的重要因素。砂土路基在压实过程中经常存在压实度达不到要求,表面松散、起皮,含水量不易控制等问题。高密实度性能可以在正确选择压实方法,所采用的压实机械参数和压实工况的基础上达到。主要从以下几个方面来重点控制,
2.1機械配置
施工机械的配备要满足施工需要,作业方法简单快速,经济合理,机械必须要配套。机械的数量则要从工程的规模、性质、施工要求、资金来源、配套设施、工期长短等方面来考虑配备。
在市政道路施工前,要根据各种试验数据,正确的选择压路机。选择压路机的主要根据是:被压材料的种类、性质、颗粒组成、含水量和铺层厚度及施工条件、工程进度以及所要求的压实度、平整度和各种压路机的技术性能等,砂土的抗剪切能力是非常差的,所以羊足碾、三脚碾是不适用于砂土压实的。大型振动压路对压实效果并不显著,激振力40 t的振动压路机在碾压两遍、三遍、四遍的压实度增长并不明显,是不经济适用的。对于砂土的压实,可以选用振动压路机和轮胎压路机,且振动压路机应选择22 t以内的轻型压路机为宜,轮胎压路机则应选择18 t以上的稍大吨位的压路机效果更好。
平地机与推土机的选择要综合考虑,因为砂土的摊铺整平是很容易的,所以在这两类机械的选择上,可以互补。另外,砂土施工时含水鼍控制范围较小,洒水车配备要充足,一般两台足够。在必要的时候(如砂土的天然含水量大于24%以上时),可以增加旋耕拌和机用以翻松晾晒。
综上所述,每套机械的组合为:两台16 t~22 t振动压路机,一台18 t以上胶轮压路机,一台120 kW以上推土机,一台160kw以上平地机,两台洒水车,另可增加50型旋耕机一台。
2.2含水量控制
砂土路基施工时有一句行话:“大雨大干。小雨小干,不下雨洒水于。”可见含水量对砂土路基压实的重要性。低液限土的击实曲线,较粘性类土来说两侧坡度较陡(砂土的最大干密度一般在1.68 g/cm3~1.79 g/cm3),也就是施工时含水量控制范围更小,因此,施工时含水量控制要求较高,过大、过小都容易引起松散、起皮。
砂土和粉砂土现场施工时,水分容易蒸发,所以在最佳含水量±2%并不能达到压实度要求。含水量比最佳含水量大时更容易压实。但就低液限粘土而言,如果含水量过大,机械振动会出现液化现象。相对其他土质更容易出现“软弹”现象,因此,气温较高且空气干燥时,砂土碾压时含水量控制在比最佳含水量高出4%~6%,雨季施工时控制在高出3%~5%为宜。
当土的含水量偏低时,一般做法是洒水车洒水后拌和。但这种作法由于水的冲力,在松土上洒水,水容易在表面形成水窝。在光面上洒水,水流淌造成浪费,渗透不到底部,效果不佳,而且造成含水量不均匀。对于纯砂土路基,采用在路基旁边打井的方法解决水源问题,这样既加快了施工速度,还节省了施工费用,比洒水车洒水节省2/3费用。
在原状土天然含水量很大时,如24%以上时,就应当用旋耕拌和机翻拌晾晒,在含水量大于最佳含水量5%左右时马上碾压。
2.3作业方法
作业段长度在100 m以内,主要是考虑砂土的水分散失快,如果压实不及时,那么在后来碾压时,前段的含水量已经偏低,造成了含水量的不均匀,会给压实造成一定的困难。压实层厚控制在25 cm之内。
整平后,先由振动压路机稳压一遍,一般压实度达80%左右,接着振动压路机对砂土碾压4遍~6遍,振动碾压时宜采用2挡(2.0 km/h~2.5 km/h),碾压轮迹相互搭接。轮迹重叠的方法是由宽到窄,再由窄到宽。碾压时,先错1/2轮弱振1遍,然后错1/3轮强振碾压直到压实度基本合格为止(一般4遍),再错1/2轮弱振1遍。机械不宜在碾压过的路基上掉头。
振动碾压后,再用轮胎压路机压1遍~2遍,轮胎压路机正好压实表层不能被振动压路机压实的2 cm,保证表层压实度及表面平整度。如此错轮方法能最大限度地保证表面平整度,消除轮迹。
对于路基局部边角地带,如桥台或挡墙后背,压路机不能碾压的部位,应采用小型手扶式振动压路机或采用蛙式夯实机进行碾压夯实,或采用灌水法。碾压完毕,检验压实度、平整度、标高、宽度、横坡度,各项指标合格后,及时进行下一层的填筑施工,尽可能减少成型的砂土路基失水。当不能及时填筑下一层砂土时,应注意及时洒水,保持足够的水分。在碾压过程中要突出快速作业,这样的压实会更容易达到要求。
2.4其他方面的要求
目前常采用重型标准击实法来测定土的最佳含水量和最大密实度,击实标准的准确性对路基施工来说就是一杆称,击实试验不准确,检查压实度就失去了意义。击实试验的土样要能够充分代表本段路基施工的情况,用来试验的仪器应当是经过标定和检定,所得出的击实数据应当是绝对可靠的。砂土的现场检测比粘土要更加严格,避免误差超过允许范围。
3砂土路基的压实度检测对填砂路基压实度,采用什么方法进行检测更为准确,我们在施工中对灌砂法、环刀法进行同点对比试验。环刀法快捷方便,尤其是极细砂在不失水状态下,用环刀法测试较为快捷。但在取样时有一定的难度,也可能引起较大的误差。灌砂法是最常见的实验方法之一,操作简单,结果较为精确。
4遗留的问题
1)砂土路基的防护。由于砂土受水流冲刷非常容易流失塌陷,所以采用什么样的防护形式就非常值得思考,而且如果是高填方路基,则更加需要保证路基不受雨水的冲蚀,保证其稳定性。
2)砂土掺灰后的CBR值较低,甚至不能达到规范的要求,那么砂土地区底基层施工就有一定的难度,采取什么样的处理方法值得研究。
3)砂土路段与粘土路段的衔接。砂土与粘土路基在后期的沉降是有很大差异的,要保证其衔接接头的平整度,不至于发生错台将是施工控制的一项关键难点。
4)干旱缺水地区砂土路基的施工。以上是在有充足水源的情况下施工,倘若在干旱缺水地区施工,如何达到其压实度将是一项重要的课题。
5结语
经过实践,我们提出了适宜的压实机械组配及操作工艺,对确保工程质量,加快施工进度有重要意义,具有较大的实用价值。但还存在一些疑问,需要在以后的施工中不断的试验、总结和完善。