论文部分内容阅读
对基于滑动窗口进行样本扩充的单样本人脸识别方法进行了改进,改进后算法一方面在识别阶段采用了比原算法更少的特征,提高了识别的时间效率;另一方面在训练阶段获得原始样本的镜像样本作为附加的训练、注册集合,通过学习训练形成双子空间,识别结果由双子空间通过决策融合得到,提高了对测试样本变化的鲁棒性。在ORL人脸库和Feret子集人脸库上的实验表明,该算法在识别率上优于同类算法。