论文部分内容阅读
根据 Van Vleck 理论,对于总自旋磁矩等于零的抗磁性物质,其摩尔磁化率如下式:X=Ne~2/6mc~2 sum from to((?)_i~2)+(3/2)N ∑(|(k|M_z|l)|)~2/(E_l-E_k)=X_d+X_p (1)式中第一项 X_d 是 Langevin 抗磁性;第二项 X_p 是由于电子壳层对称性降低所产生的 Van Vleck 顺磁性。新的磁化学法直接用 X_d 和 X_p 描写抗磁性物质。由于实验测定的总是抗磁化率 X,为了研究键合特性需要将 X 分解为 X_d 和 X_p 通常是由实验测定极化率
According to Van Vleck’s theory, the molar susceptibility of a diamagnetic material with a total spin magnetic moment equal to zero is as follows: X = Ne ~ 2 / 6mc ~ 2 sum from to (?? _i ~ 2) + (3/2) The first term X_d is the Langevin diamagnetic property. The second term X_p is due to the symmetry of the electron shell (Nm) (| (k | M_z |) |) ~ 2 / (E_l_E_k) = X_d + X_p Reduce Van Vleck paramagnetism generated. The new magneto-chemical method uses X_d and X_p to describe the diamagnetic material directly. Since the experimental determination of the total anti-magnetic susceptibility X, in order to study the bonding properties need to be resolved into X_d and X_p X is usually determined experimentally by the polarizability